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Introduction.  Mathematical models of physiology in general, and the cardiovascular system 

in particular, in combination with modern inference methodology, may enable a quantitative 

interpretation of monitoring data acquired in acute care settings1. In this context, lumped 

parameter   models   play  an   important   role  since   they  preserve  direct   physiological 

interpretability while at the same time minimizing the number of unknown parameters and 

states.  Thus, they help to improve the conditioning of the inverse problem of state and 

parameter  estimation  that  possibly  presents  the  largest  obstacle  to  practical  bedside 

implementation  of  such  approaches.  Any  model-based  data  interpretation  approach  is 

naturally restricted to  accessing the information content in observed phenomena that the 

underlying mechanistic model can capture. An area where mechanistic models suitable for 

integration into a modular lumped parameter representation of the cardiovascular system are 

scarce is that of reflection phenomena  within the arterial circulation, although these are 

important in generating the observed morphology of arterial pressure and flow curves. This is 

particularly important for peripheral measurement locations such as the radial artery, which 

are common in clinical practice. One class of  previously described models uses partial 

differential equation formulations, which allow great  flexibility and physical realism, at the 

expense of increased computational expense and parameter and state space 

dimensionality, with corresponding adverse effects on inverse problem conditioning. Others 

make,  for  the  purposes  of  ab  initio  simulation,  overly  simplifying  assumptions  such  as 

impedance matching at artery termination points and thus require realistic pressure or flow 

waveforms as input rather than being able to generate them  (e.g.,  2). Finally, frequency 

domain formulations (e.g., 3), while computationally advantageous, do not lend themselves to 

convenient interfacing with modular time domain models. Here, we present a time-domain 

mathematical model of the large arteries which is capable of ab initio simulation of arterial 

pressure and flow waveforms with realistic morphology using a minimal number of state 

variables and parameters. We then interface it to a simple model of the cardiovascular 

system to demonstrate its suitability for the applications described above. Methods. Initially 

following2, we  start from the d’Alembert form of the general solution of the Telegrapher’s 

Equation. This  decomposes the general solution of this one-dimensional partial differential 

equation describing a lossless transmission line used to represent a large artery as an elastic 

tube additively into forward and backwards propagating waves. We then impose boundary 

conditions representing influx and  outflux against Ohmic resistances under general time 

varying input and output pressures. The resulting equations can equivalently be expressed in 

a  form  that  further  decomposes  the  current  forward  and  backward  propagating  waves 



smooth points where the pressure difference across the valves changes sign (i.e., the   opening and 

closing times) is achieved using the dde23 event detection mechanism, which is used to identify these points 

and restart  integration appropriately. Results. Model behaviour proved to be numerically 

robust. The model quickly settles into quasi-steady state behaviour from reasonable but non-steady- state  

initial  conditions  and  is  capable  of  producing  waveforms  with  many  key  morphological properties  

of   real  arterial  pressure  and  flow  waveforms.   In  spite  of  the  low  dimensional parametrization  

(essentially two parameters for the arterial tube + approx. a dozen to completely parametrize the entire 

cardiovascular system model for arbitrary heart rates, valvular resistances etc.), dependence of waveform 

morphology on the simulated location of measurement within the artery was captured in a physiologically 

plausible way (figure shows one cardiac cycle after initial equilibration). Discussion.  The presented model 

is capable of capturing key morphological properties of the arterial pressure and flow waveforms utilizing 

a  small number of parameters and states that retain direct physiological interpretability. Through its 

generic  formulation which, at the interfaces, allows for arbitrary time varying pressures, it can 

seamlessly be  integrated into modular lumped parameter models of the cardiovascular system, as 

illustrated by the simple example above. In addition to direct utilization  in  the  application  areas  

outlined  above,  future  extensions   will  include  systematic exploration of the possible benefits of 

utilizing higher order iterative substitutions and adaptation to more realistic physical representations of the 

arterial system, including branched vessel arrangements. 
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